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1.  Introduction. 

In this report we propose a method for recursive evaluation of 

certain probabilities associated with two classes of finite homogeneous 

Markov chains. These chains are next of kin to Bernoulli random walks 

with reflecting and absorbing barriers. They may be roughly character- 

ized by the following four properties: 

(1) Except for the barrier stites, (one-step) transitions from each 
state can be made to exactly two other states. 

(2) The states are divided Into two subsets, S  and S ,  plus an 
Initial state In the absorbing case. States In S  communicate 
with states In S  only via a pair of states, one In each subset. 

(3) Except for the absorbing states, the probability of transition 
among states In S  and among states In S  has only two values, 
p , 1 - p  and p ,  1 - p  respectively. 

(4) If states In each of the two subsets are ordered such that the 
transitions with probability p are all between adjacent states In 
one direction then the transitions with probability 1 - p are all 
In the opposite direction, but not necessarily to the adjacent state. 

A glance at Figures 1 and 3 may help to reveal the structure of a typical 

member of those two classes. 

We are Interested In the ratio of limiting probabilities of a 

chain being In the subset S  and the subset S. .  In sections 2 and 3 
a b 

we present a recursive formulae for evaluating these probabilities. Subse- 

quent examples show that the computation Is considerably simpler than the 

classical method of solving systems of linear equations.  Our method involves 

nothing but repeated substitution and Is easy to perform and program even 

for a large number of states. 

The need for studying these ratios arises In problems connected 

with finite automata with binary Inputs and outputs driven by a Bernoulli 

sequence. These, in turn, appear in the so-called finite memory problems 



(References [1] through [4]), which are currently receiving considerable 

attention in literature. 

The reason for writing this report is twofold. First since the 

proofs of our formulae (Sections 4 and 5) are basically algebraic and thus 

rather long it is usually necessary to condense the proof when the formula 

is used as a lemma. Hence we wanted to have the proof documented in full 

detail for reference. Next, it is conceivable that Markov chains of the 

type studied here may be encountered in various stochastic models. Hence, 

the second purpose of this report is to provide an access to our results 

to other workers in the general area of stochastic modelling. 

To this we would like to add that the two formulae can probably be 

generalized in several directions.  For instance, inspection of the proofs 

indicate that the same method could still be used to establish similar 

formulae for a larger class of chains, namely without the property (3) 

above. 

The part on ergodic chains (Sections 2 and 4) and the part on 

absorbing chains (Sections 3 and 5) can be read independently. 



2.    Ergodlc Chains. 

Let    r    -  {r  (2),r  (3),...}    and    r.   - {r. (2) ,r. (3) ,...}    be two 
a a a "^ü D D 

sequences of positive  Integers such that    1 £ r  (1)  <  1,    is fuU)  <  i. 

1 - 2,3,...    With each such pair    (r  ,r.)    we associate a class —a —i> 

E(r   ,r.)  -  {M :  n-I,2,...   ;  m-1,2,...} —a ~~ti n ,in 

of  finite ergodlc Markrv chains.    The chain    M has     n + m    states 
n,m 

which are divided into two subsets S  and S,  with n and m states 
a      b 

respectively. 

We label the states in S  by (l,a),  1 • l,...,n, and the 

states in S.  by  (t,b),  1 « l,...,ni. The transition probabilities are 
D 

as follows: 

P((i,a) - (1+1,a)) - p ,  1 - 1 n-1, 
a 

P((n,a) -► (ni,b))  - p^, 

P((i,b) - (1+1,b)) - pb,  1 - l,...,m-l, 

P((m,b) •♦ (n,a))  - pb, 

P((i,a) - (ra(l),a)) - qa,  1 - 2,...,n, 

P((l,a) - (i,a))  - q 
a 

P((l,b) +  (rb(i),b)) - qb,   1 - 2,...,m, 

P((l,b) - (l,b))   - qb. 

Here 0<p <1,  0<p. <1,  q -1-p,  q. -l-p.-  All other ra b      a      a   b      b 

transition probabilities are zero. The transition diagram is depicted in 

Figure 1. 



Figure   I 



Proposition 1: Let M   € E(r ,i\ ),  let M(S), S 6 S US,  be its 
        n, m    —a —b a   b 

stationary distribution, let 

u(S ) =  I  u(s)  and  u(S ) =  I u(s) 
3   s€S b   s^S^ 

a b 

be the stationary probabilities of tue chain being in S  and  SL a       b 

respectively. Then 

U(S ) p" A 

U(S.) D B  ' {2A) 

b p   m 
a 

where A  and B  are polynomials in p  and p  respectively satisfying 

the recurrence relations 

An+1 " P; 
+ ^ .  l'*C1'    Al-1'    "= l'2      {2-2) 

l=r  (n+1) 
a 

m 
B^l =pb+%p  Ln^' '  Bl = ^    m= l'2     (2-J) 

l-r. (m+l) 
D 

Hence, both A  and B  have integral coefficients and are of degree 
n      m 

less than n and m,  respectively. 

(For the proof see Section 4.) 

Example 1;  Let (r ,r )  be given by the following table 
^a'^b' b - -—'•    "J     w..^ » •»•.*•»-   »..£, 

i r  (D r. (1) 

2 
a D 

1 

3 1 

4 3 

5 3 

b • 



Figure   2 



let n « 4, m « 5. The transition dlagr*» of this 9-state chain is 

in Figure 3. 

First evaluate A.  and Bc.  From (2.2) we have 

A, - p2 + q A.p2-1 + q A.p2"2 , 
3   a   a la     a 2 a 

A - p + q A.p 1-1 

2   a  ^a la 

A1 - 1 , 

and substituting from the bottom to the top gives 

A1'  1   , 

A2 - pa * qa - i . 

A, - p2 + q p  ■♦■ q  , 
3   a   a a  ^a 

A - p3 ■»■ q p + q p2 + q2p + q2 , 4   a   a a  ^a a   a a  1a 

or by substituting q ■ I - p 
3 9 

A, - p? - p2 + I, 
'♦   a   a 

Similarly from (2.3) 

h-K* %«A-*+\*r>. 

B4 ■ Pb + ''b^Pb'3 • 

B3 ■ p^ %(BiPb"i+B2Pr2) • 



B2 ■ "b * Vipr • 

Bj-l. 

and again substituting 

1,-1. 

B2 " Pb + qb • 1 ' 

B3 " Pb + qbPb + qb ' 

B4 - pb + qbPb * qbPb + qb ' 

B5 " Pb + qbPb * qbPb + qbPb 

+ qbPb + qbPb * qbPb + qb ' 

or substituting for q." 1 - p. 
D D 

Hence, from (2.1) 

B5 - p3 - pb ^ 1. 

w(Sa)  pj PJ - P* + 1 

^V "^ PJ - pb * 1 



3. Absorbing Chains. 

Let r - {r (l),r (2),...} and r. - {r. (1) ,r. (2),...} be two 
a    a   a "o    o   o 

sequences of nonnegative Integers such that 

0 * r (i) < i, 0 « r. (i) < i,    i - 1,2,... 
a D 

With each such a pair (r ,r. ) we associate a class 
■a -b 

A(r ,r.) - {M   : n-1,2,... ; m-1,2,...} 
—a "T)     n ,ni 

of finite absorbing Markov chains. The chain M    has n + m + 1 states, 
n,ni 

two of them absorbing and the rest transient. One state is always 

designated as an initial state while the remaining n + m states are 

divided into two subsets S  and S  with n and m states respectively, 

each containing one of the two absorbing states. 

We label the states in S  by  (i,a)  i - lt...,n with (n,a) 

absorbing, and the states in S.  by (l,b),  i ■ l,...,m with (m,b) 
D 

absorbing. The initial state is labeled (0,a) or (0,b) or just 0 

as needed. 

The transition probabilities are as follows: 

P((i,a) - (i+l,a)) - p .     i - l,...,n-I, 
a 

P((n,a) ■♦ (n,a)) = 1, 

P((i,b) - (i+l,b)) - pb,     i - 1 m-l, 

P((m,b) - (m,b)) - 1, 

P((i,a) - (r (i),a)) - q^,    i - 1 0-1, 

P((i,b) +  (rb(i),b)) - qb,    i - 1 m-l, 
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P(0 H. (i.a)) = j^— . 

P(0 - (l.b)) 
Pb 

pa + pb 

Here    0<p    <1,     0<p.   <1,    q    =l-p.     q.   ■ 1 - P. .    All other a b a ab b 

transition probabilities are zer.-.    The transition diagram Is depicted 

In Figure 2. 

Proposition;    Let    M        € A(r  ,r, ),    let    Tr(a)    and    ir(b)    be the probabilities   n,in —a —o 

of absorption in the state    (n,a)    and    (m,b)    respectively,  if the initial 

state is  the state    0.     Then 

^       P"    B 
lisl . -i  JE n n 
n(b)        m   A    ' (3-u 

Pb      n 

where    A      and    B      are polynomials in    p      and    p,     respectively satisfyinc n m a b *    m 

the recurrence relations 

n k-r (k) 

Vl = 1 " ^ J0 
Ar (k)pa    a      •A0-0' n-1'2         (3-2) 

k=Z      a 

m k-r (k) 
Bmfl = 1 " qb J9 

BrK(k)pb '    B0"0' m-1'2       (3-3) 
k=2       b 

Hence both A  and B  have Integral coefficients and are of degree 
n      m 0 

less than n and m respectively. 

(For the proof see Section 5.) 
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INITIAL 

Figure 3 



12 

Example 2;    Let    (r  ,j%)    be given by the following table 

1 r^ r^Ol 

10 0 

2 1 1 

3 1 1 

4 2 3 

5 • 3 

let n - 4, m = 5. The transition diagram of this 10-state chain Is 

In Figure 4. 

First evaluate A.  and B,.. From (3.2) we have 

A
4 

= i - wr+Va'1)' 

Al - 1 " VoPa'0 ' 

A0-0 . 

and substituting from the bottom to the top 

A0 = 0 . 

A1 = 1 , 

A4 " 1 " V« " qaPa ' 

or substituting for    q    ■ 1 - p 
3L fl 

A.   - p3  - p    + 1. 
4        a       a 

Similarly from (3.3) 

B5 = 1 " 1b<BlPb'1+BlPb"1+B3Pb"1)   ' 

B3 = 1 ' VlPb'1  ' 



13 

Figure   4 
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and again substituting 

B3 "  1 " %%  • 

B5   "   1   - PbS  " ?l%  - Pbqb + Pjqj   . 
or 

B5 "  ^ - Pj - Pb * 1. 

Hence,  from (3.1) 

ZUI     Pj 2pb - Pb - Pb ^ 1 

w(b)  " ^ '     P^ - Pa 
+ 1 
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4.    Proof of Proposition 1. 

Let    P    be  the transition probability matrix for the chain    M       , 
n,ni 

where the first n rows and columns correspond to states  (i,a),..., (n,a) 

and the following m rows and columns to states  (m.b) ,...,(l,b) . 

Let £= (p(l ,a) ,. . . ,p(n,a) ,u(m,b) ud.b))  be the stationary 

distribution, so that 

üd-P) - 0 , (4.1) 

where    I    Is  the Identity matrix.    Now partition  the matrix    P    Into four 

submatrlces 

V P b b 

where P  Is an n * n matrix 
a 

Row: 

1 

2 

ra(i) 

Column: r (D    1 a 



and P  Is an m x m matrix 

Bow: 

16 

0   pb 0v     qb 

Pb 0   *. 

pb0 % 
pbqb 

ra(l) 

2 

1 

Column: rb(l) 

Notice that each row of these matrixes contains exactly one entry q, 

namely the (l,r(l))— one, and that the labelling of rows and columns 

of P.  begins at the lower right corner while the labelling of P  Is 

the usual one (beginning at the upper left corner). 

The off-diagonal matrices V  and V  consist of all zeros except 

for the lower-left corner entry of V , which is p , and the upper- 

right corner entry of V. ,  which Is p.. 
D D 

With this partitioning the equation (4.1) decomposes Into two 

equations 

^(I-P^ - (0 0,u(m,b)pb), (4.2) 

Ujjd-Pj,) - (p(n,a)pa,0 0), (4.3) 

where 
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J^ -  (u(l,a),...,y(n,a))   , 

and 

U^ -  (w(m,b),....yClfb)). 

Consider the matrix equation (4.2)  first.     Solving for    u      gives 

Ü3 -  (0 0,p(m,b)pb)(I-Pa)'1   , 

or denoting o..  the  (1,J)— entry of the Inverse  (I-P ) 
ij a 

u(l,a) - u(in,b)pban 1,    j - 1,..  n. (4.4) 

By the well-known formula for matrix inversion 

»IJ 

1 - P 
 lla.i) 
i - p 

a 

where | I - P  |  is the determinant of 1 - P  and  j I-P L. ., 

is the (k,l)— cofactor of  | I - P  |. Hence 

n         u(m,b)p. n 
w(Sa) - £ M(1..) - | , . p^ , ^ | I - Pa |(i>n).     (4.5) 

Next  let    A      be the determinant of the    n * n    matrix obtained from 
n 

I-P      by replacing  the    n—    column by a column of    I's, 
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A = 
n (4.6) 

Expanding A  along this last column we obtain 
n 

*." jj I-P. Id.n)- 

since the  (l,n)— cofactors of A  and j I - P  I are Identical. 
n      '     a ' 

Thus, (4.5) can be written as 

M(Sa) a 

u(m(b)p. 

1 -P. 

Next since the only flow of probabilxty between sets S 

through states  (n,a) and (m,b) we must have 

and    S.     ia 
D 

y(m,b)pb - jj(n,a)p4 (4.7) 

in the stationary regime.    Using (4.4) we obtain 

I   I  -P 
u(n,a)  ■ u(n>,b)p 

a   '(n.n) 

I - P 



and substituting from (4.7) 

But 

l-P       -pi-P   L     . 
a   '       "a1 a  '(n,n) 

19 

I - P 
a   '(n,n) 

which Is same as the determinant of  the    (n-1)  x   (n-1)    matrix    I - P 
a 

obtained for the chain    M    ,       € E(r  ,r.).    Employing temporarily the super- n—i ,ni —^ —\> 

script     (n)     for the number of  states In    S      we have a recurrence relation 

jCn)  _ p(n) 
a P.I i'-1' - pi"-» I . 

and since  | I^ - P(1) | - p  we obtain 

<«) . p(n) | . p». 

Thus 

U{S)   - -^ Vi(m,b)pK. an      D 
P. 

Now going back to (4.3) and repeating all the steps above we obtain a 

similar expression 



W(S. ) - —- \i(ntA)p^, 
D    m      a 

20 

where B  Is the determinant of order m 

m 

\ 

"Pb1 -«Iv 

-pb 1 . -qb 

-Pb1 ^b 

-Pbpb 

Hence, using again (4.7) we have 

m 
'■(s.>   -b \ 
l'!sb> " p- B« " 

a 

and  It remains  to prove that    A      and    B      satisfy the recurrence relations n m 

(2.2),   (2.3). 

We begin with the determinant    A  .    To evaluate this determinant 
n 

let 

I1 - {1 - 2 n : ra(l) - 1} . 

Notice that I.  Is the set of exactly those row Indices 1 for which the 

(1,1)— entries In (4.6) are -q . Now multiply the first row In (4.6) 

by q /p  and add It to all rows such that 16 1.. The determinant 
a a i 

becomes 
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P -P 

0    p -p 

-q    1  -p 

1 -p 

1 -p 

(n) 
12 

Mi 
'12 

where we temporarily dropped the subscript    a    to ease  the notation.    The 

entries  In the last column are given by 

"21 

1 + q/p    If     1 € I1, 

if     1 i Ij. 

Expanding this determinant along the first column we have 

D<n> - pD{n> 

» where D.x"' * A  Is the original determinant (4.6) and 
1     n 

t(n) 
C22 

.(n) 

(n) 
2n 



22 

Is of order    n - 1.    Notice that the entries  In tie first column In    D (n) 

are -q only for row Indices 1 - 3 n such that either r(l) * 1 

or r(l) - 2. Hence, calling I - {1 - 3,... ,n : r(l) < 3), multiplying 

the first row In D^ ' by p/q and adding to rows with 1 € !_ this 

determinant becomes 

P -P 

0 p -p 

W 
1 -p 

in) 
32 

•2n 

The entries in the last column are 

C3i 

(n)  £ (n)  lf 4 r ! 

» 
'21 

If 1 £ I2. 

Expanding again along the first column we have 

..<■" ■ .<>. 

where 

D<») . 

P -P w 
.1. -p 

1 -p 

(n) 
33 

(n) 
•3n 
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Proceeding In this fashion we obtain a sequence of determinants 

D(n)     (n) (n) (4.8) 

where D^n  is of order n - k + 1. The entries t, j  i» the last k ki 
.(n) column of    0. satisfy the recurrence relation 

«rhere 

t(n) 
fcfl.i 

..(n)      £    (n)     .,     .   , T 

'kl    + q  ^       if     i c lk' 

An) 
ki if    l<Ik. 

A f 1 

Ik - {i - k+1 n  :  r(i) i k} 

(4.9) 

Further 

so  that 

D(a)   -   oD(n) 
D).+l        pDk      ' 

.{n).pn-Vn)   -p^t^. J r n r        nn 

(rH-1) 

(4.10) 

Consider now the determinant    A 

by using the same sequence   £, 

of order    n + 1    obtained 

(iH-1)    m 



2A 

Applying the above procedure to D (irfl)  A(irH)     .fc . 
' « A     we obtain a sequence 

.(n+1) 
1 

D:   *',...,D (afl) 
n+l 

(4.11) 

where the determinants D   ^ again satisfy (4.9) with n replaced by 

n + 1. Arrange now the last columns of the sequences (4.8) and (4.11) 

Into triangular arrays as follows: 

.(n) 

An) 
11 
.(n)  .(n) 
c12 ' c22 

,(n)  (n) 
^n ' ^n 

t(n) 
nn 

T(rH-l) „ 

^11 

(n+l) (nfl) 
c12  •t22 

(t*l)(t*l) 
Lln     'C2n 

.(n+l).(itfl) 
cl,n+r 2,n+l 

(tH-1) 
nn 

(nfl) (nfl) 
n.n+l* nfl.nfl 



I 
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Since for i i n by the definition of sets I^n) 

i € I^n) if and only if 1 6 l^ 

the first n rows of T(n) and T(ttfl) are identical, i.e. 

t™  -  t^. i-k n  ;     k-1 n. (4.12) 

Next by (4.9) 

II if    k - 1 r(nfl), 

k-1 
1+1       I        t..1)    if    k - r(iH-l)+l rH-1. 

P l-r(ttfl)  £'£ 

In particular for    k - n + 1    since    r(n-H) < n + 1 

t»v+1.n+1       i + « I       ttt        • (4.13) 
nfl-H-1 ■> t-r^)'" 

But by  (4.12)  for    1 < n + 1 

ru        zn      •••    hi * 
,(n+l)  _ Jn)  _ _ Jl) 

so that  (4.13) becomes 

n 

Hence, by  (4.10) 

D "^ n        D A> 

pn        p i-p(ifi) p4-1 
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or calling again    D.       - A     we have 
i     n 

n 

Vl"Pa+qa,  ,LYA1P' *    n" 1,2  

where clearly A1 ■ 1. 

The recurrence relation for B  is established in exactly the 
m 

same fashion. 

Noticing the obvious fact that the polynomials A  and B  must 

have integral coefficients completes the proof of Proposition 1. 
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5. Proof of Proposition 2. 

Notice first that with 0 being the Initial state any subsequent 

visit to this state is a recurrent event.  Call this event E . Wext call 

E  the event which occurs if the chain after leaving the state 0 reaches 

the absorbing state  (n,a) without any further visit to state 0. Similarly, 

define E,  for the absorbing state (m,b).  Now clearly 

P(E0) > 0, 

and since the absorbtlon in  (n,a) occurs if and only if we have either 

E  or R.E  or R.RnE   etc. a      0 a     0 0a 

P(E ) 
n(a) 

1 - P(E0) * 

and similarly 
P(E.) 

w(b) - 
1 - P(E0)  ' 

so that. 

Hal  ÜV 
ir(b) " P(Eb)  ' 

(5.1) 

Next 

P(E ) -   ! „ P(Ei). (5.2) 
a   P + P.    a pa + pb 

where E1  is the event which occurs if and only if the chain after leaving 
a 

the state  (l,a)  reaches the absorbing state (n,a) without ever visiting 

the state 0. 

Consider now a subchain Ma obtained from the chain M    by 
n n,ra 

making the state 0 an absorbing state and deleting states (l,b)  though 
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(m,b). The transition probability matrix for this subchaln Is the 

(iH-1) x (n+1) matrix 

If this subchaln Is started at the state (l,a) then ?(£*) Is 
a 

equal to the probability of absorption In (n,a) for this subchaln. Using 

the veil-known result from the algebraic theory of Markov chain (cf. [5], 

Theorem 3.3.7) we have 

PCEl) 
a Paal.n-r 

(5.3) 

where [a ] = (I-Qa) 
-1 and Q  Is the (n-1) x (n-1) matrix of transl- a 

tlon probabilities between transient states of   M  ,    I.e. 
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0 p 
All O's 

q     Op 

0 P, 

By the formula for matrix inversion 

I I - Q 

•l,n-l  \   I - Q 
aUn-l.l) (5.4) 

where  | I - Q |  is the determinant of I - Q  and 
a a 
st is its  (n-1,1)— cofactor. Now 

I - Q 
a1(n-1,1) 

"P. All O's 

l^al(n-l.l)-(-1)n 
-qa   1 :Pa 

"<». 

l      1 -P *•       \ a 

1 "P. 

n-2 
P.   • 

and calling A - | I - Q  |  we obtain from (5.2), (5.3) and (5.4) 
n        s 

P(E.) 
'a   1 

a'  p + p. A * ra  rb n 
(5.5) 
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Following the same procedure for the event E.  we obtain 

m 

'oy 
P. + Pb Bm ' 

(5.6) 

where B
m " I ! " Qb I and Qb Is the (m-l) x (m-1) matrix of transi- 

tion probabilities between transient states (l,b) (m-l.b). Hence, 

(5.1). (5.5) and (5.6) yields (3.1) and It remains to establish the recur- 

rence relations for A  and B . 
n      m 

To do this we evaluate the determinant 

1 -p 
All O's 

1 -p 

1 -p 

where we dropped the subscript a to ease the notation. Notice that A 

Is of order n - 1 and that each row but the first has either exactly one 

subdiagonal entry equal to -q, namely the (i,r(l))—, or all subdia- 

gonal entries are zero. The former case occurs if r(l) > 0 while the 

latter if r(l) - 0. 

Next consider the determinant A    of order n obtain for the 

chain M_^,   with the same (r ,r.). Then 
n+l.m —a —o 
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ftfl 

r 
i • 
i. 
i. 
In 

-q 

rp 

Now if r^Cn) - 0 then there Is no -q in the last row and hence 

A . -    Ai 
n+l   n (5.7) 

If  T (n) > 0 then expanding A    along the last column gives h+1 

A .. - A + pD , 
n*-l   n  'n* (5.8) 

where 

n-1 

-q 

IP. 
0 

is of order n-1. Notice that the entry -q in the last row moved one 

step to the right. Expanding D  again along the last column gives 
n 

pD. 
n-l« 

where 0 ,  is of order n 
n-1 

- 2 
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n-1 n-2 

-P_ 

0 

Now repeating this the entry -q eventually (after n - r (n) steps) 
cl 

reaches the diagonal and we have 

r (n)+l a a 

.  .  . 0 

0 

£ 
-q 

and expanding this determinant along the last row yields 

V (n)+l " '^r (n)' 

Substituting back Into (5.8) we obtain 

. . n-r(n)   , 
Vl-An-qp Ar(n). (5.9) 

which holds for any n * 1,2,...  such that 

r (n) > 0. 
a 
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To Include the case r (n) - 0 define A_ - 0. Then (5.9) reduces to 
a U 

(5.7).  Finally, repeatedly substituting for A  In (5.9) and using the 

obvious fact A. « 1 we obtain the recurrence relation (3.2).  Notice 

that (3.2) holds also for n * 1 since r (1) * 0 always. 

The relation (3.3) for B  is established In exactly the same 
n 

fashion from | I - Q. |. 

Noticing the obvious fact that the polynomials A  and B  must 
n      m 

have Integral coefficients completes the proof of Proposition 2. 
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